

International Journal of Ayurveda and Pharma Research

Research Article

A CLINICAL STUDY TO EVALUATE ROLE OF AYURVEDIC MANAGEMENT FOR IMPROVING ACTIVITIES OF DAILY LIVING IN CEREBRAL PALSY AFFECTED CHILDREN

Choudhary Kuldeep R1*, Abhimanyu Kumar2

*1Lecturer, Sri Satya Sai Murlidhar Ayurvedic college and Hospital, Moga, Punjab, India.

²Professor and Director, All India Institute of Ayurveda, New Delhi. India.

Received on: 22/07/2014 Revised on: 10/08/2014 Accepted on: 26/08/2014

ABSTRACT

Background: Cerebral palsy is disorder of neuromotor origin due to non progressive brain damage in its early developing period. It is often accompanied by other features like seizures, behavioral disorders and cognitive impairment restricting their normal activities of daily living, making them to be dependent on others. Aim and Objectives: The present clinical study was designed with an aim to improve quality of life and establish optimal independence in activities of daily living (ADL) by potentiating the effects of world widely accepted Physiotherapy treatment along with Ayurvedic modality for better management of Cerebral palsy with a ray of new hope. **Material and Methods:** The study was performed on forty five patients of age group one to twelve years of either sex. Patients were therapeutically randomized into three groups and received treatment for six months. Group A (n=14) received Physiotherapy; Group B (n=14) was treated with Physiotherapy and Ayurvedic procedures while Group C (n=14) received Physiotherapy, Ayurvedic procedures and Syp. Ayurvedic compound. Out of forty five cases, three of them discontinued treatment. Parameters for assessment were based on standard guidelines of Activities of daily living - Modified Barthel score. Results: The effect of therapy observed on total ADL score at end of six months was statistically significant (p<0.05) in Group A with a gain of 58.41% while in Group B and C it was statically highly significant (p<0.001) with gain of 62.80% and 62.68% respectively. **Conclusion:** The improvement noted in Group B and C was enhanced by effects of Ayurvedic procedures and Syp. Ayurvedic compound due to improvement in muscle tone, gain in muscle strength, proper nourishment of *Dhatus* and intelligence for better skilled performance.

KEY WORDS: Cerebral palsy, Physiotherapy, Ayurvedic management, ADL.

INTRODUCTION

Cerebral palsy (CP) is defined as non progressive disorder of movement and posture caused by insult or injury to developing brain during its early stage of development. Being predominantly motor disorder it is often accompanied by cognitive impairment, seizures and extra pyramidal abnormalities. The data about its prevalence and relationship to etiological factor is very scanty in our country. Although the overall prevalence rate is 2.5 per 1000 but may vary from 1 to 6 per 1000. [1,2] The condition poses considerable diagnostic and therapeutic challenge to the treating physician. The disability restrains the child's ability to perform normal activities of daily living thereby

rendering him/her to be dependent on others for their needs.

Management of CP in children requires multidisciplinary approach. Physiotherapy is accepted worldwide as standard for rehabilitation procedure. Medical management of spasticity, seizures etc. are associated with minimal effects.

There is no specific disorder similar to CP mentioned in Ayurvedic texts. Much information regarding the different aspects of this condition is found scattered in the various context of antenatal, natal and postnatal care. Based on above information and the clinical manifestations, it may be considered that CP is a

is a disorder of *Vata* predominance manifesting all over body with site of lesion in Mastishka (Brain), in form of Monoplegia (Ekanga Vata), Hemiplegia (*Pakshaghata*), Diplegia (*Pangu*), Quadriplegia (Sarvanga Vata) etc. As the Mastishka or Shira pradesh is the location of Gyanendriya and Karmanendriya. So the feature of Gvanendrivakarmahani (loss of sensation of sensory organs) are usually accompanied with involvement motor (Karmenendriya). involvement of Chaksu - indriva leads to Andhata(optical/ cortical blindess), Vikrut dusthi (Squint, strabismus), refractive errors etc. The involvement of *Shotra – indriva* leads to *Badhirva* (sensorineural deafness) and Sparsha - Indriya leads to loss of perception of sensations. The higher functions of brain like Buddhi is also affected ranging from mild to severe Mental retardation.

Keeping in view of *Doshic* and *sub-doshic* involvement, the treatment was formulated with consideration of Ayurvedic procedures like *Abhyanga*, *Shastik Sali Pinda Sweda*, *Matra basti* and *Shirodhara* along with oral compound containing ingredients with predominantly properties of *Medhya*, *Balya*, *Brimhana* and *Vatahara*. The principle was to bring out normalcy of vitiated *Dosha*, providing better nourishment to *Dhatus* and to compensate for brain damage up to certain extent with concept of regenerating neurons and improving cognition.

AIMS AND OBJECTIVES

- To improve quality of life in CP affected children.
- Early rehabilitation to improve the functional capacity of the child.

- To reduce spasticity, deformities and to prevent development of contractures.
- To establish optimal independence in daily life activities by learning skilled movement.

MATERIAL AND METHODS

For the present clinical study total 45 cases of diagnosed CP patients (irrespective of type and cause) were selected from O.P.D and I.P.D of Balroga, National institute of Ayurveda (Jaipur) from year 2008-11. Duration of the trail was for six months. Out of them 3 cases did not turn up for complete follow up hence were dropped out from the study and were completed in 42 patients.

Selected patients were therapeutically randomized into three groups. Group A receiving Physiotherapy treatment, Group B receiving Physiotherapy and *Panchkarma* procedures and Group C receiving *Panchkarma* procedures, Syp. *Ayurvedic* compound and Physiotherapy. In each Group A, B and C 14 patients managed to complete their trial for 6 month duration.

Criteria Adopted

- 1. **Inclusion criteria:** Age group one to twelve years of either sex.
- 2. Exclusion Criteria: Individuals below one years and above twelve years of age.

 Progressive neurologic disorders.
- 3. **Discontinuation Criteria:** Parents / guardian not willing to continue treatment. Patients who develop life threatening complication during treatment.
- 4. **Assessment Criteria for ADL:** Modified Barthel Score [3]

Table 1: Modified Barthel Index

Item	Unable to	Attempt task	Moderate	Minimal help	Fully
	perform task	but unsafe	help required	required	Independent
Personal hygiene	0	1	3	4	5
Bathing self	0	1	3	4	5
Feeding	0	2	5	8	10
Toilet	0	2	5	8	10
Stair Climbing	0	2	5	8	10
Dressing	0	2	5	8	10
Bowel control	0	2	5	8	10
Bladder control	0	2	5	8	10
Ambulation	0	3	8	12	15
(wheel chair)	(0)	(1)	(3)	(4)	(5)
Chair – bed	0	3	8	12	15
transfer					

A. Trial Compound

Syp. Ayurvedic compound – A compound containing eleven herbs were selected for the present study. It was prepared by the institute pharmacy in the form of syrup for making it palatable.

Method of preparation of Study drug - All the ingredients were taken in the quantities mentioned in table no.2. After making their coarse powder, the powder was soaked in water for one night. Later on coarse powder of the drugs was boiled after adding water (8 times

than powder), till it remained 1/8 of total quantity. Then sugar was added to decoction and boiled for 30 min., after that the preparation was allowed to cool. Then preservatives were added in the preparation. At last, flavor and color were added.

ISSN: 2322 - 0910

Presentation - The drug was packed and sealed in sterile, airtight, each 200 ml quantity glass bottles labeled with date of manufacture and batch no.

Table no. 2: Ingredients	of Syp. Ayurvedic compound
--------------------------	----------------------------

S.	Drug name	Botanical name	Part used	Proportion
No	_			_
1.	Brahmi	Bacopa monnieri (L.) Pennell.	Panchanga	1 part
2.	Mandookparni	Centella asiatica (L.)Urban	Panchanga	1 part
3.	Vacha	Acorus calamus L.	Root	¼ part
4.	Jatamansi	Nardostachys jatamansi DC.	Rhizome	½ part
5.	Ashwagandha	Withania somnifera Dunal	Root	1 part
6.	Madhuyasthi	Glycyrrhiza glabra L.	Root	1 part
7.	Bala	Sida cordifolia L.	Root	1 part
8.	Guduchi	Tinospora cordifolia (Willd.)	Stem	1 part
		Hook.F. & Thoms.		
9.	Vidarikanda	Pueraria <mark>t</mark> uberosa (<mark>Rox</mark> b. Ex.	Tubers	1 part
		Willd.) Dc.		
10.	Kapikacchu	Mucuna pruriens (L.) DC	Seed	½ part
11.	Pippali	Piper longum L.	Fruit, Root	¼ part

Drug dose and duration: Doses were calculated according to the body weight of the child (1ml/kg/day) in three divided doses for six months. Children were called for follow up after every 30 days. Any discomfort or untoward side effects were noticed.

B. Panchkarma Procedures - The procedures applied during the course of treatment were

Table 3: Procedures applied during study and their respective duration

Procedures	Ingredients /	Duration of therapy (Same for all age group)					
	Medications						
Abhyanga	Kshirbala Taila	15 mins. per day continuously for six months					
Shastik Sali	Shastik Sali, Balamula	30 mins. per day for 21 days continuously					
pinda sweda	kwatha and Godugdha	followed by a rest of 7 days. Such one cycle was					
		repeated for 6 times.					
Matra basti	Kshirbala taila	10 days continuously once in a 2 month period.					
		Such one cycle was repeated for 3 times.					
Shirodhara	Balamula kwatha with	30 mins. per day for 10 days continuously once in					
	godugdha	a 2 month period. Such one cycle was repeated for					
		3 times.					

C. Physiotherapy – A set of exercise containing passive and gentle stretching was performed on individual joints. It was also carried out coupled with *Abhyanga* once in a day in form of repetitive passive range of motion exercises to improve and maintain joint mobility.

Statistical analysis – By using Students paired and unpaired 't' test.

OBSERVATION AND RESULTS

The study reported max no. of cases from age group 1-4 yrs (54.76%), followed by 5-8 yrs (35.71%) & age group 9-12 years (8.33%). Affected male were 66.66 % & female with 33.34

%. Among total registered cases 37 were spastic (88.10%) in nature followed by 4 (9.52%) cases of Hypotonic and 1 (2.38%) case of Dyskinetic. Of the total Spastic CP cases, the maximum no of patients i.e. 14 (37.83%) were found to be

Quadriplegic followed by 13 (35.13%) patients of Diplegic in nature. 7 (18.91%) cases were found to have Hemiplgic pattern, 2 (5.40%) cases were Monoplegic and 1 (2.70%) of Double hemiplegia in nature.

Table 4: Showing Effect on Activities of Daily living score in Group A

Sr.	Particul	Duratio	Mean	Mean	Mean	%	S.D.	S.E.	' t '	' p '	Result
no	ars	n	BT	AT	Diff	change	(±)	(±)	value	value	
		in	(n = 14)	(n = 14)	(n = 14)						
		month									
1.	Personal	2 m	0.2857	0.2857	0	0	0	0	0	-	-
	Hygiene	4 m	0.2857	0.4286	0.143	33.36	0.3631	0.0971	1.472	>0.10	In. Sig.
		6 m	0.2857	0.7853	0.5	63.66	1.0919	0.2918	1.713	>0.05	In. Sig.
2.	Bathing	2 m	0.7143	0.4615	0	0	0	0	0	-	-
	Self	4 m	0.7143	0.8571	0.143	16.684	0.3631	0.0971	1.472	>0.10	In. Sig.
		6 m	0.7143	01.2143	0.5	41.175	0.8549	0.2285	2.188	< 0.05	Sig.
3.	Feeding	2 m	1.2857	1.0769	0	0	0	0	0	-	-
		4 m	1.2857	1.7143	0.429	25.024	1.0894	0.2912	1.472	>0.10	In. Sig.
		6 m	1.2857	2.3571	1.071	45.437	1.3281	0.3549	3.019	< 0.01	Sig.
4.	Toilet	2 m	0.7143	0.8571	0.143	16.684	0.5345	0.1429	1.0	>0.10	In. Sig.
		4 m	0.7143	1.0714	0.357	33.320	0.9288	0.2482	1.439	>0.10	In. Sig.
		6 m	0.7143	1.2857	0.571	44.411	1.5046	0.4021	1.421	>0.10	In. Sig.
5.	Stair	2 m	0.5714	0.5714	0	0	0	0	0	-	-
	climbing	4 m	0.5714	0.8571	0.286	33.368	0.7263	0.1941	1.472	>0.10	In. Sig.
		6 m	0.5714	1.2857	0.714	55.533	1.8157	0.4853	1.472	>0.10	In. Sig.
6.	Dressing	2 m	0.8571	0.8571	0	0	0	0	0	-	-
		4 m	0.8571	1.0	0.143	14.3	0.5345	0.1429	1.0	>0.10	In. Sig.
		6 m	0.8571	1.5714	0.714	45.437	1.2044	0.3219	2.129	>0.05	In. Sig.
7.	Bowel	2 m	0.8571	1.0	0.143	14.3	0.5345	0.1429	1.0	>0.10	In. Sig.
	control	4 m	0.8571	1.3571	0.5	36.843	1.019	0.2724	1.836	>0.05	In. Sig.
		6 m	0.8571	2.2143	1.357	61.283	2.3074	0.6167	2.201	< 0.05	Sig.
8.	Bladder	2 m	0.8571	1.0	0.143	14.3	0.5345	0.1429	1.0	>0.10	In. Sig.
	control	4 m	0.8571	1.3571	0.5	36.843	1.019	0.2724	1.836	>0.05	In. Sig.
		6 m	0.8571	2.2143	1.357	61.283	2.3074	0.6167	2.201	< 0.05	Sig.
9.	Ambulati	2 m	1.0	1.0	0	0	0	0	0	-	-
	on	4 m	1.0	1.9286	0.929	48.169	1.9	0.5078	1.829	>0.05	In. Sig.
		6 m	1.0	2.1429	1.143	53.338	1.9556	0.5229	2.187	< 0.05	Sig.
10.	Chair bed	2 m	0.7857	0.7857	0	0	0	0	0	-	-
	transfer	4 m	0.7857	1.0	0.214	21.4	0.8018	0.2143	1.0	>0.10	In. Sig.
		6 m	0.7857	1.2143	0.429	35.328	1.0894	0.2912	1.472	>0.10	In. Sig.
11.	Total	2 m	7.9286	8.1429	0.214	2.628	1.4769	0.3947	0.543	>0.10	In. Sig.
	score	4 m	7.9286	11.571	3.643	31.483	6.6749	1.784	2.042	>0.05	In. Sig.
L		6 m	7.9286	19.071	11.14	58.413	15.084	4.0313	2.764	< 0.02	Sig.

(Sig. – significant; H.Sig – highly significant; In.sig –insignificant)

Table 5: Showing Effect on Activities of Daily living score in Group B

no	Particul	Duration	Mean BT	Mean AT	Mean diff	%	S.D.	S.E.	't'	'p'	Result
	ars	In month	(n=14)	(n=14)	(n =14)	change	(±)	(±)	value	value	
1.	Personal	2 m	0.5	0.5714	0.0714	12.495	0.2672	0.0714	1.0	>0.10	In. Sig.
	Hygiene	4 m	0.5	1.0714	0.571	53.294	0.7559	0.202	2.828	<0.02	Sig.
		6 m	0.5	1.8571	1.357	73.070	1.1507	0.3075	4.413	<0.001	H. Sig.
	Bathing	2 m	1.2143	1.2143	0	0	0	0	0	-	-
	Self	4 m	1.2143	1.9286	0.714	37.021	0.9139	0.2442	2.924	<0.02	Sig.
		6 m	1.2143	2.3571	1.143	48.491	0.9493	0.2537	4.505	<0.001	H. Sig.
3.	Feeding	2 m	2.3571	2.3571	0	0	0	0	0	-	-
		4 m	2.3571	3.5714	1.214	33.992	1.4769	0.3947	3.076	< 0.01	Sig.
		6 m	2.3571	4.5714	2.214	48.431	1.2514	0.3344	6.621	< 0.001	H. Sig.
4.	Toilet	2 m	0.5714	0.7143	0.1429	20.005	0.5345	0.1428	1.0	>0.10	In. Sig.
		4 m	0.5714	1.4286	0.857	59.988	1.2315	0.3291	2.604	<0.05	Sig.
		6 m	0.5714	2.7857	2.214	79.477	2.0821	0.5565	3.979	< 0.01	Sig.
5.	Stair	2 m	0.5714	0.7857	0.2143	27.275	0.8017	0.2142	1.0	>0.10	In. Sig.
	climbing	4 m	0.5714	1.2857	0.714 LTVe	55.533	1.2044	0.3219	2.219	<0.05	Sig.
		6 m	0.5714	2.1429	1.571	73.311	1.989	0.5316	2.956	<0.02	Sig.
6.	Dressing	2 m	0.7143	0.8571	0.1429	16.672	0.534	0.1428	1.0	>0.10	In. Sig.
		4 m	0.7143	1.6429	0.929	56.546	1.3281	0.3549	2.616	<0.05	Sig.
		6 m	0.7143	2.9286	2.214	75.599	1.8472	0.4937	4.485	<0.001	H. Sig.
7.	Bowel	2 m	1.7857	1.9286	0.1429	7.409	0.534	0.1428	1.0	>0.10	In. Sig.
	control	4 m	1.7857	2.9286	1.143	39.028	1.4064	0.3759	3.04	< 0.01	Sig.
		6 m	1.7857	4.2857	2.5 <i>JAPK</i>	58.333	1.286	0.3437	7.274	< 0.001	H. Sig.
8.	Bladder	2 m	1.7857	1.9286	0.1429	7.409	0.5345	0.1428	1.0	>0.10	In. Sig.
	control	4 m	1.7857	2.9286	1.143	39.028	1.4064	0.3759	3.04	<0.01	Sig.
		6 m	1.7857	4.2857	2.5	58.333	1.286	0.3437	7.274	< 0.001	H. Sig.
9.	Ambulati	2 m	1.6429	1.6429	0	0	0	0	0	-	-
	on	4 m	1.6429	3.0714	1.429	46.526	2.0649	0.5519	2.589	<0.05	Sig.
		6 m	1.6429	4	2.357	58.92	2.2398	0.5986	3.938	<0.01	Sig.
10.	Chair bed	2 m	1	1	0	0	0	0	0	-	-
	transfer	4 m	1	1.7143	0.714	41.649	1.4373	0.3841	1.859	>0.05	In. Sig.
		6 m	1	3.4286	2.429	70.845	2.5333	0.6771	3.587	<0.01	Sig.
11.	Total	2 m	12.14	13	-0.8571	6.59	1.561	0.417	2.053	>0.05	In. Sig.
	score	4 m	12.14	22.28	-10.41	46.72	10.21	2.729	3.71	< 0.01	Sig.
		6 m	12.14	32.64	-20.5	62.80	13.17	3.521	5.82	<0.001	H. Sig.

(Sig. – significant; H.Sig – highly significant; In.sig –insignificant)

ISSN: 2322 - 0910

Table 6: Showing Effect on Activities of Daily living score in Group C

Sr.	Particula	Duratio	Mean	Mean	Mean	%	S.D.	S.E.	' t '	'p'	Result
No	rs	n	BT	AT	diff	Change	(±)	(±)	value	value	
		in month	(n=14)	(n=14)	(n=14)						
1.	Personal	2 m	0.7143	0.7857	0.071	9.036	0.2673	0.0714	1.0	>0.10	In. Sig.
	Hygiene	4 m	0.7143	1.5	0.786	52.4	0.8926	0.2386	3.294	< 0.01	Sig.
		6 m	0.7143	2	1.286	64.3	1.069	0.2857	4.5	< 0.001	H. Sig.
2.	Bathing	2 m	1.5714	1.8571	0.286	15.400	0.6112	0.1634	1.749	>0.10	In. Sig.
	Self	4 m	1.5714	2.4286	0.857	35.287	0.7703	0.2059	4.163	< 0.001	H. Sig.
		6 m	1.5714	3.0714	1.5	48.837	1.019	0.2724	5.508	< 0.001	H. Sig.
3.	Feeding	2 m	2.7143	2.8571	0.143	5.005	0.5345	0.1429	1.0	>0.10	In. Sig.
		4 m	2.7143	4.1429	1.429	34.492	1.5046	0.4021	3.553	< 0.01	Sig.
		6 m	2.7143	5.4286	2.714	49.994	1.4373	0.3841	7.066	< 0.001	H. Sig.
4.	Toilet	2 m	1.2143	1.2143	0	0	0	0	0	-	-
		4 m	1.2143	2.5714	1.357	52.7723	1.4469	0.3867	3.51	<0.01	Sig.
		6 m	1.2143	3.7857	2.571	67.913	2.5027	0.6689	3.844	<0.01	Sig.
5.	Stair climbing	2 m	0.9286	1.2143	0.286	23.552	0.7263	0.1941	1.472	>0.10	In. Sig.
		4 m	0.9286	2.0	1.071	53.55	1.3281	0.3549	3.019	<0.01	Sig.
		6 m	0.9286	3.4286	2.5	72. 916	2.5038	0.6692	3.736	<0.01	Sig.
6.	Dressing	2 m	1.4286	1.71 <mark>43</mark>	0.286	16.683	<mark>0.7</mark> 263	0.1941	1.472	>0.10	In. Sig.
		4 m	1.4286	2.7857	1.357	48.713	1.4469	0.3867	3.51	< 0.01	Sig.
		6 m	1.4286	4.1429	2.714	65.509	2.1989	0.5877	4.619	<0.001	H Sig.
7.	Bowel	2 m	2.0	2.1429	0.143	6.673	0.5345	0.1429	1.0	>0.10	In. Sig.
	control	4 m	2.0	3.3571	1.357	40.42	1.4469	0.3867	3.51	< 0.01	Sig.
		6 m	2.0	5.0714	3.071	60.555	1.4917	0.3987	7.704	< 0.001	H. Sig.
8.	Bladder	2 m	2.0	2.1429	0.143	6.673	0.5345	0.1429	1.0	>0.10	In. Sig.
	control	4 m	2.0	3.3571	1.357	40.421	1.4469	0.3867	3.51	< 0.01	Sig.
		6 m	2.0	5.0714	3.071	60.555	1.4917	0.3987	7.704	<0.001	H Sig.
9.	Ambulatio	2 m	2.0	2.2143	0.214	9.664	0.8018	0.2143	1.0	>0.10	In. Sig.
	n	4 m	2.0	3.5714	1.571	43.988	2.1381	0.5714	2.75	< 0.02	Sig.
		6 m	2.0	5.0714	3.071	60.555	2.5257	0.675	4.55	< 0.001	H. Sig.
10.	Chair bed	2 m	0.7857	1.4286	0.643	45.009	1.2774	0.3414	1.883	<0.10	In. Sig.
	transfer	4 m	0.7857	2.2143	1.429	64.535	1.7852	0.4771	2.994	<0.01	Sig.
		6 m	0.7857	4.1429	3.357	81.030	3.4776	0.9294	3.612	<0.01	Sig.
11.	Total	2 m	15.357	17.571	2.214	12.600	3.6623	0.9788	2.262	<0.05	Sig.
	score	4 m	15.357	27.929	12.57	45.006	10.234	2.735	4.596	<0.001	H. Sig.
		6 m	15.357	41.143	25.79	62.683	15.582	4.1644	6.192	<0.001	H. Sig.

(Sig. - significant; H.Sig - highly significant; In.sig -insignificant)

Table 7: Showing effect on Activities of Daily living score - Inter group (Pre) comparison at end of six month duration

Sr. No	Particulars	Inter Group comparison	Mean diff		S.E.	' t ₂₆ '	'p'	Result
	D 1	_	(n = 28)	(±)	(±)	Value	Value	I. C'.
1.	Personal Hygiene	A - B	-0.214	0.9678	0.36583	0.5858	>0.10	In.Sig
	78 -	A - C	-0.429	1.06904	0.4040	1.0607	>0.10	In.Sig
		B – C	-0.214	0.9678	0.3658	0.5858	>0.10	In.Sig
2.	Bathing Self	A – B	-0.5	1.3475	0.5093	0.9817	>0.10	In.Sig
		A – C	-0.857	1.4713	0.55611	1.5413	>0.10	In.Sig
		B – C	-0.357	1.3837	0.5230	0.6828	>0.10	In.Sig
3.	Feeding	A – B	-1.071	2.45	0.926	1.157	>0.10	In.Sig
		A – C	-1.429	2.447	0.9249	1.544	>0.10	In.Sig
		B – C	-0.357	2.202	0.8322	0.429	>0.10	In.Sig
4.	Toilet	A – B	0.1429	1.667	0.6302	0.226	>0.10	In.Sig
		A – C	-0.5	1.8523	0.7	0.714	>0.10	In.Sig
		B – C	-0.643	1.237	0.467	1.374	>0.10	In.Sig
5.	Stair Climbing	A – B	0 FA	1.650	0.623	0	>0.10	In.Sig
		A – C	-0.357	1.843	0.6967	0.512	>0.10	In.Sig
		B – C	-0. <mark>35</mark> 7	1.245	0.4709	0.7584	>0.10	In.Sig
6.	Dressing	A – B	0. <mark>14</mark> 29	1.6935	0.6401	0.2231	>0.10	In.Sig
		A – C	-0 <mark>.57</mark> 1	1.991	0. <mark>75</mark> 28	0.7591	>0.10	In.Sig
		B – C	-0.714	1.444	0.5461	1.3079	>0.10	In.Sig
7.	Bowel Control	A – B	-0.929	2.076	0.7847	1.183	>0.10	In.Sig
		A – C	-1.143	2.1636	0.8177	1.3975	>0.10	In.Sig
		B – C	-0.214	2.0602	0.7786	0.2752	>0.10	In.Sig
8.	Bladder	A – B	-0.929	2.076	0.7847	1.183	>0.10	In.Sig
	Control	A – C	-1.143	2.1636	0.8177	1.3975	>0.10	In.Sig
		B – C	-0.214	2.0602	0.7786	0.2752	>0.10	In.Sig
9.	Ambulation	A – B	-0.643	2.3139	0.8745	0.735	>0.10	In.Sig
		A – C	-1.0	2.601	0.9833	1.016	>0.10	In.Sig
		B – C	-0.357	2.6254	0.9923	0.3599	>0.10	In.Sig
10.	Chair bed	A – B	-0.214	2.2562	0.8527	0.251	>0.10	In.Sig
	transfer	A – C	0	2.224	0.840	0	>0.10	In.Sig
		B – C	0.2143	2.2562	0.8527	0.2512	>0.10	In.Sig
11.	Total effect	A – B	- 4.214	17.1	6.463	0.652	>0.10	In.Sig
		A – C	- 7.429	18.407	6.9575	1.0677	>0.10	In.Sig
		B – C	- 3.214	15.30	5.7850	0.555	>0.10	In.Sig

(Sig. - significant; H.Sig - highly significant; In.sig -insignificant)

ISSN: 2322 - 0910

Table 8: Showing effect on Activities of Daily living score - Inter group (Post) comparison at end of six month duration

Sr.	Particulars	Inter Group	Mean diff	S.D.	S.E.	' t ₂₆ '	' p '	Result
No		comparison	(n = 28)		(±)	Value	Value	
1.	Personal	A – B	-1.071	1.5941	0.602	1.778	>0.05	In.Sig.
	Hygiene	A – C	-1.214	1.69112	0.6391	1.899	>0.05	In.Sig.
		B – C	-0.143	1.6608	0.6277	0.227	>0.10	In.Sig.
2.	Bathing Self	A – B	-1.143	1.7272	0.6528	1.7506	>0.05	In.Sig.
		A – C	-1.857	1.873	0.7082	2.6223	< 0.02	Sig.
		B – C	-0.714	1.882	0.7115	1.003	>0.10	In.Sig.
3.	Feeding	A – B	-2.429	3.1596	1.1942	2.033	>0.05	In.Sig.
		A – C	-3.071	2.9912	1.1306	2.716	>0.02	Sig.
		B – C	-0.643	3.197	1.208	0.532	>0.10	In.Sig.
4.	Toilet	A – B	-1.5	2.654	1.003	1.495	>0.05	In.Sig.
		A – C	-2.5	3.083	1.165	2.145	< 0.05	Sig.
		B – C	-1.0	3.092	1.169	0.8554	>0.10	In.Sig.
5.	Stair	A – B	-0.857	2.5158	0.9509	0.9014	>0.10	In.Sig.
	Climbing	A – C	-2.143	3.151	1.191	1.798	>0.05	In.Sig.
		B – C	-1.286	3.045	1.151	1.117	>0.10	In.Sig.
6.	Dressing	A – B	-1.357 A	2.803°da	1.059	1.280	>0.10	In.Sig.
		A – C	-2.571	3.083	1.165	2.206	<0.05	Sig.
		B – C	-1.2 <mark>14</mark>	2.859	1.080	1.123	>0.10	In.Sig.
7.	Bowel	A – B	-2. <mark>07</mark> 1	2.982	1.127	1.837	>0.05	In.Sig.
	Control	A – C	-2 <mark>.85</mark> 7	2.982	1.127	2.534	< 0.02	Sig.
		B – C	-1. <mark>071</mark>	2.730	1.0 <mark>3</mark> 1	0.7614	>0.10	In.Sig.
8.	Bladder	A – B	-2.071	2.982	1.127	1.837	>0.05	In.Sig.
	Control	A – C	-2.857	2.982	1.127	2.534	< 0.02	Sig.
		B – C	-1.071	2.730	1.031	0.7614	>0.10	In.Sig.
9.	Ambulation	A – B	-1.857	3.709	1.401	1.324	>0.10	In.Sig.
		A – C	-2.929	3.983	1.505	1.944	>0.05	In.Sig.
		B – C	-1.071	4.291	1.622	0.6605	>0.10	In.Sig.
10.	Chair bed	A – B	-2.214	3.2686	1.2354	1.792	>0.05	In.Sig.
	transfer	A – C	-2.929	3.464	1.309	2.236	<0.05	Sig.
		B – C	-0.714	4.156	1.570	0.4547	>0.10	In.Sig.
11.	Total effect	A – B	-13.57	25.39	9.597	1.414	>0.10	In.Sig.
		A – C	-22.07	27.245	10.297	2.143	<0.05	Sig.
		B – C	-8.5	27.210	10.284	0.8265	>0.10	In.Sig.

(Sig. - significant; H. Sig - highly significant; In. sig -insignificant)

The overall effect of treatment observed on total ADL score in Group A at end of 2 & 4 months showed improvement which was statistically insignificant (p > 0.10 & p>0.05) with gain of 2.62% and 31.48% respectively while at the end of 6 months the improvement noted was statistically significant (p<0.05) with gain of 58.41% (Table no.3). The result obtained in Group B at end of 2 months showed improvement to be statistically insignificant (p

>0.05) with gain of 6.59%. The improvement noted at 4 and 6 month was statistically significant (p < 0.01) and highly significant (p<0.001) with gain of 46.72% and 62.80% respectively (Table no.4). The effect observed in Group C at 2 months showed improvement which was statistically significant (p<0.05) with gain of 12.60%. The improvement noted at 4 and 6 months was statistically Highly significant

(p<0.001) with gain of 45% and 62.68% respectively (Table no.5).

Before analyzing the effectiveness of treatment of one group over the other, the Mean BT of both Inter groups were compared by using Unpaired't' test to check the uniformity of sample. The inter Group difference analyzed in all three inter groups showed statistically insignificant result (p>0.10) which indicates uniformity of sample size. (See table no. 6) The Mean AT of both Inter groups were compared by using Unpaired't' test.

The post inter group difference test in Group A – B shows that Group B had advantage over Group A which was statistically insignificant (p>0.10) while in Group A – C, the Group C showed advantage which was statistically significant (p<0.05) whereas in Group B – C the result was statistically insignificant (p>0.10). (Table no.7)

DISCUSSION

The effect of therapy observed on total ADL score at end of six months was better in Group B and C compared to Group A. Thus it signifies the effectiveness of combined approach incorporated for better improvement. Similarly, in post inter group comparison test Group C dominated over Group A marginally to be significant.

The effect achieved in Group C compared to Group B may be due to effects of Syp. Ayurvedic Compund having Medhya, Balya, Brihmana properties. Medhya drugs improve cognition because ADL not only requires motor function but also certain level of intelligence and skill training. Balya and Brihmana drugs helped in the proper nourishment and maintenance of dhatus. It also requires continuous support or their actual participation of parents to make him learn. So the result found in this particular test cannot be interrelated fully due to lack of large sample size. It also depends on the educational status of parents how much they are aware of this condition and what is their role hence counseling also plays pivotal role on parents.

Probable mode of Action of Trial drug (Syp. Ayurvedic compound)

On evaluation of Ayurvedic pharmacodynamical properties, the ingredients of Syp. Ayurvedic compound are predominantly of Madhura, Tikta, Katu and Kashaya rasa; Snigdha, laghu and Guru guna; Ushna and Sheeta

Virya; Madhur and Katu Vipaka; Tridosha shamaka and with Medhya and Balya properties.

Madhura rasa is Sarvadhatu Vardhaka. Brimhana, Jeevaniya, Preenana and Balva. Sthairyakarana. Madhur rasa is formed by composition of Prithvi and Jala mahabhuta. The panchabhautika composition of Mansa dhatu resembles to Madhura rasa. Hence by the law of Samanyam Vridhikarnam, Madhura rasa helps in the growth & proper nourishment of muscular tissue. By virtue of Sarvadhatu vardhaka property, Madhura rasa is capable of providing support and proper nourishment to neurons in order to take up load of already damaged neurons. Madhura rasa along with Tikta and *Katu* rasa may help in the proper development of neuron synapses and thereby generating a process of regeneration in neuronal precursor cells. Katu rasa is responsible for Indriya utojetaka (to stimulate sensory/motor organs to perceive their subject), Agnidipana (secretion of synaptic vesicles) hormones in Maraana vivraunati (to create new pathway for proper functioning and replacement of damaged neurons) so it can be postulated that it may provide stimulus in the regions of brain where cells are capable of regenerating especially hippocampal region.

Ushna virya helps to increase the blood circulation in brain while Sheeta virya with Stambhana and Sthirikarana property may restrict the excessive neuronal discharge that is seen in case of convulsions.

Madhur vipaka is said to increase all the Sharira dhatu including brain and muscular tissues. Katu vipaka on the other hand increases the overall metabolism in the body, proper enzymatic secretions, thereby minimizing the nutrients deficiencies and stimulates all sense organs to perceive their respective objects.

The effect of Syp. *Ayurvedic Compound* can be further postulated on principles of modern perspective as follows:

i. Drugs capable of Regenerating Neurons are Mandookparni which has shown increase in length of dendrites of Amygdaloid neurons:[4] Nerve regeneration;^[5] and Hippocampal CA3 neuronal dendritic arborization & neuroprotective effect.^[6] Ashwagandha has shown effect on Induction of Axon or Dendritic outgrowth;[7] Neuron regeneration and synaptic reconstructions [8]

- ii. Drugs having Neuroprotective role are Jatamansi;^[9] Mandookparni;^[6] Ashwagandha; ^[10] Vacha;^[11] Pippali;^[12] Yasthimadhu;^[13] Kapikacchu.^[14]
- iii. Drugs having Anti convulsant action are Jatamansi;^[15] Ashwagandh;^[16] Yasthimadhu.
- iv. Drugs showing effect on cognition, learning and memory are *Jatamansi;*^[18] *Brahmi;*^[19] *Mandookparni;*^[15] *Vacha;*^[20] *Guduchi;*^[21] *Yasthimadhu.*^[22,23]
- v. Drugs having Balya and Brimhana effect are Bala, Vidarikanda, Ashwagandha and Kapikacchu.

Effect of Abhyanga: The Abhyanga was carried out with Kshirbala taila. The effect of Abhyanga can be assumed in two way i.e. physical manipulations and the effect of medicated oil. The ingredients of Kshirbala taila are Bala, Tila taila and Godugdha. Bala is Vatashamak and Balya that absorbed locally with the help of oil media provides nutrition to muscular tissue preventing from atrophy of muscles and improving muscular tone.

The main part of *Abhyanga* procedure is the mechanical stimulation more precisely the pressure application during massage therapy. Pressure application done in proper way can in reduction of motor neurone hyperexcitability by reducing the alpha motor neuron activity. The way of mechanism of action is not clearly understood and the amount of pressure to be given to stimulate deep tendon receptors or superficial mechanoreceptors is still not properly understood. A study reported that in hemiparetic subjects the H-reflex was both continuous depressed during and intermittent tendon pressure. Intermittent pressure was more effective than continuous. [24,25] In a study, cerebral palsy symptoms in children were decreased following massage therapy but the mechanism behind it was not explained in the study [26] In this way Abhyanga acts through the properties of Sneha as discussed above that help to encounter vitiated *Vata*.

Effect of Shastik Sali Pinda Sweda - Shastik rice (Oryza sativa linn.) is Snigdha, Bala vardhana and Deha dardhyakrita. Bala and Godugdha used to cook the Shastik sali and to heat the bolus is Snigdha, Balya, Rasayana and Vatahara. The heat provided by bolus of Shastik sali dipped in Balamula kwatha with Godugdha may increase the blood flow locally, relieve muscle spasm, increase tendon extensibility and provide pain

relief. *Bala* absorbed locally provides nourishment to muscular tissue and prevents from emaciation.

Thus combined effect of *Abhyanga* and *Shastik shali pinda sweda* along with Physiotherapy helps in reducing spasticity, facilitating the free movement of the joints and preventing from development of deformities and contractures. It also provides nutrition to muscular tissue thereby preventing from atrophy and detrimental changes.

Effect of Matra Basti - Basti is being the most widely used and highly effective treatment modality for treating neurological disorders. The pharmacodynamical action of *Basti* in alleviating symptoms of neurological manifestation in exact way is still not clearly understood. The ingredients of Kshirbala taila are Vatashamak and Balva. It counteracts the vitiated Vata at root level of its origin thereby normalizing and influencing its sub doshic level at other distant sites too. This mode of action can be explained on concepts of System biology. The theory says that all organs are interconnected or interrelated functionally with each other at molecular directly indirectly. Thereby level or pathophysiological alteration at one level results into change at another level. The gastro intestinal tract has rich network of nerve fibres known as enteric nervous system and it works in synergism with central nervous system. Thus the effect of Basti at gastrointestinal system will definitely affect other system thereby achieving a level of homeostasis. Thus it helps to control and regulate symptoms of cerebral palsy.

Effect of Shirodhara - In a study the psycho neuro - immunologic changes of Shirodhara was studied. The results showed that Shirodhara has anxiolytic and Altered state of consciousness inducing effects, and it promotes a decrease of noradrenaline and exhibits a sympatholytic effect, resulting in the activation of peripheral foot skin circulation and immunopotentiation.^[27] Thus chemical constituent of Shirodhara may modulate secretions the of various neurotransmitter and hormone thereby controlling seizures, cognitive impairment and behavioral problems like anxiety, attention deficit hyperactivity disorder etc. associated with cerebral palsy

CONCLUSION

The overall result notes that the effect of Physiotherapy is potentiated by Ayurvedic

ISSN: 2322 - 0910

procedures and *Syp. Ayurvedic Compound* (with properties of *Medhya*, *Balya* and *Brihmana*) for better reduction in spasticity, prevention of joint deformities and contractures and thereby, promoting for early achievement in areas of ADL by improving muscle tone, gain in muscle strength, proper nourishment of *Dhatus* and intelligence for better skill performance.

The study suggest for further extensive researches in areas of application of *Panchkarma* procedures like *Abhyanga*, *Shastik Sali pinda sweda*, *Shirodhara* and *Basti* for understanding better way of mechanism with the help of modern medical aids like EMG, EEG etc.

REFERENCES

- 1. Bottos M, Granato T, Allibrio G. Prevalence of cerebral palsy. Ger-Med-Child-Neurol. 1999;41(1):26-39.
- 2. Koterazawa-K, Nabetani-M, Miyata-H, Kodama-S, Takada- S. Incidence of cerebral palsy. No-To-Hattatsu.1998;30(6): 489-93.
- 3. Loewen SC; Anderson BA. Reliability of the modified motor assessment scale and the Barthel index. Phys Ther. 1988;68(7):1077-81.
- 4. K.G.Mohandas Rao, S.Muddanna Rao and S.Gurumadhva Rao. Enhancement Amygdaloid Neuronal Dendritic Arborization by Fresh Leaf Juice of Centella asiatica (Linn) During Growth Spurt Period in Rats. Oxford Journals Medicine Evidence-Medicine, APR Compl. and Alt. based 2007;6(2):203-210.
- 5. Amala Soumyanath, Yong-Ping Zhong, Xiaolin Yu, Dennis Bourdette, Dennis R. Koop, Sandra A. Gold, et al. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation invitro. Iournal of Pharmacy and Volume Pharmacology. 57 Issue 9, Pages 1221 - 1229.
- 6. Lee MK, Kim SR, Sung SH, Lim D, Kim H, Choi H, et al. Asiatic acid derivatives protect cultured cortical neurons from glutamate induced neurotoxicity. Res Commun Mol Pathol Pharmacol. 2000; 108 (1-2): 75-86.
- 7. Tohdha, Chihiro. Dendrite extension by methanol extract of *Ashwagandha* (roots of Withania somnifera) in SK-N-SH cells. Neuropharmacology. 2000;11(9);1981-1985.

- 8. Kuboyama T, Tohda C, Zhao J, Nakamura N, Hattori M, Komatsu K. Axon or dendrite predominant outgrowth induced by constituents from *Ashwagandha*. Neuroreport 2002;13(14):1715-20.
- 9. Salim S, Ahmad M, Zafar KS, Ahmad AS, Islam F. Protective effect of *Nordostachys jatamansi* in rat cerebral ischemia. Pharmacol. Biochem Behav. 2003;74(2):481-6
- 10. Sushma Jain, Sunil Dutt Shukla, Kanika Sharma, Maheep Bhatnagar. Neuroprotective Effects of *Withania somnifera* Dunn. in Hippocampal Subregions of Female Albino Rat. Phytotherapy Research. 2001;15(6):544–548.
- 11. S.R. Yende, U.N.Harle, V.V.Bore, A.O.Bajaj, K.K.Shroff, Y.D.Vetal. Reversal of neurotoxicity induced cognitive impairment associated with phenytoin and phenobarbital by *acorus calamus* in mice. Journal of Herbal Medicine and Toxicology 2009; 3(1):111-115
- 12. Min Fu, Zhao-hui Sun and Huan-cong Zuo. Neuroprotective Effect of Piperine on Primarily Cultured Hippocampal Neurons. Biological & Pharmaceutical Bulletin. 2010; 33(4):598
- 13. P. Muralidharan, G. Balamurugan, Venu Babu. Cerebroprotective effect of Glycyrrhiza glabra Linn. root extract on hypoxic rats. Bangladesh J Pharmacol. 2009;4:60-64.
- 14. T. Maheswaria, D. Vijayrajaa, R. Kundhavai Natchiyara, K. Kalaivania, S. Rajasankarb K. Tamilselvama, T. Manivasagama. Synergistic neuropreventive effect of withania somnifera root powder and mucuna pruriens seed powder in parkinsonic mice model. Journal of Herbal Medicine and Toxicology. 2010;4(2)63-69.
- 15. Rao VS, Rao A, Karanth KS. Anticonvulsant and neurotoxicity profile of *Nardostachys jatamansi* in rats. J Ethnopharmacol 2005;6:102:351.
- 16. Kulkarni, S K Akula, Kiran Kumar Dhir, Ashish. Effect of *Withania somnifera* Dunal root extract against pentylenetetrazol seizure threshold in mice: Possible involvement of GABAergic system. IJEB 2008;46(06).
- 17. Nassiri-Asl, M., Saroukhani and F. Zamansoltani. Anticonvulsant effects of aqueous extract of *Glycyrrhiza glabra* root in

- PTZ-induced seizure in mice. Int. J. Pharmacology.2007;3:432-434.
- 18. Hanumanthachar Joshi, Dr.Milind Parle. *Nardostachys jatamansi* Improves Learning and Memory in Mice. Journal of Medicinal Food. Mar 2006, Vol. 9, No. 1:113-118.
- 19. Roodenrys S, Booth D, Bulzomi S, Phipps A, Micallef C, Smoker J. Chronic effects of *Brahmi* (Bacopa monniera) on human memory. Neuropsychopharmacology. 2002; 27(2):279-81.
- 20. Dey C.D, Bose S and Mitra S. Effect of some centrally active phytoproducts on mazelearning of albino rats. Indian J. Physiol Allied Sci.1976;30:88-90.
- 21. Ashutosh Agrawal, et al. Effect Of *Tinospora Cordifolia* On Learning And Memory In Normal And Memory Deficit Rats: Indian Journal of Pharmacology 2002;34:339-349.
- 22. Dinesh Dhingra and Amandeep Sharma. Antidepressant-like activity of Glycyrrhiza glabra L. in mouse models of immobility tests. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2006;30(3):449-454.

- 23. Dinesh Dhingra, Milind Parle, S.K. Kulkarni. Comparative Brain Cholinesterase-Inhibiting Activity of *Glycyrrhiza glabra, Myristica fragrans*, Ascorbic Acid, and Metrifonate in Mice Journal of Medicinal Food. Summer. 2006;9(2): 281-283.
- 24. Kukulka CG, Fellows WA, Oehlertz JE, Vanderwilt SG. Effect of tendon pressure on alpha motoneuron excitability. Phys Ther. 1985;65:595.
- 25. Kukulka CG, Beckman SM, Holte JB, Hoppenworth PK. Effects of intermittant tendon pressure on alpha motoneuron excitability. Phys Ther. 1986;66:1091-1094
- 26. Maria Hernandez-Reif, Tiffany Field, Shay Largie, Miguel Diego, Natasha Manigat, Jacqueline Seoanes, et al. Cerebral palsy symptoms in children decreased following massage therapy, Early Child Development and Care. 2005;175(5):445–456.
- 27. Kazuo Uebaba, Feng-Hao Xu, Hiroko Ogawa, Takashi Tatsuse, B.C., Bing-Hong Wang, Tatsuya Hisajima, et al. Psychoneuroimmunologic **Effects** of Ayurvedic Oil-Dripping Treatment. journal of alternative and complementary medicine. 2008;14(10): 1189-1198.

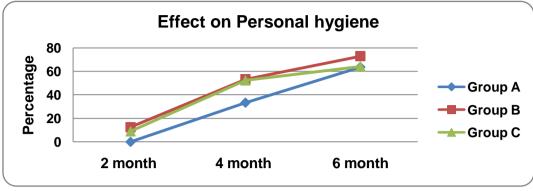
Cite this article as:

Choudhary Kuldeep R, Abhimanyu Kumar. A Clinical Study to Evaluate Role of Ayurvedic Management for Improving Activities of Daily Living in Cerebral Palsy Affected Children. Int. J. Ayur. Pharma Research. 2014;2(4):68-82.

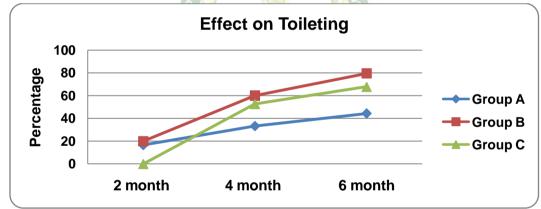
Source of support: Nil, Conflict of interest: None Declared

*Address for correspondence Dr. Choudhary Kuldeep R

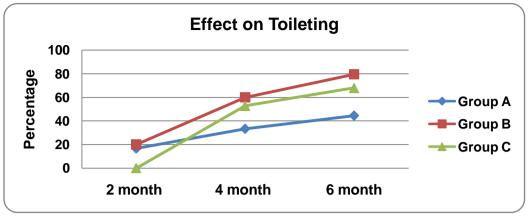
Lecturer


Sri Satya Sai Murlidhar Ayurvedic Medical College and Hospital Dune- Ke, G.T. Road Moga (142001) Punjab, India.

Phone: +919461627760


+918198865710


E-mail: kuldeepall@yahoo.co.in


GRAPHS
Graphs showing effect of therapy in particular item of Modified Barthel Index



